o . Meccanica dei Materiali e delle Strutture
. % UNIVERSITA Vol. 3 (2012), no.4, pp. 10-17
A ISSN: 2035-679X
2{[§* DEGLI STUDI Dipartimento di Ingegneria Civile, Ambientale, Agpagiale, Dei Materiali
5, % @ DI PALERMO DICAM
Zopg g™

SLANGTNG - SOFTWARE FOR STOCHASTIC STRUCTURAL
ANALYSIS MADE EASY

Christian Bucher*, Sebastian Wolfff

Center of Mechanics and Structural Dynamics
Vienna University of Technology
Karlsplatz 13, A-1040 Vienna, Austria
e-mail: christian.bucher@tuwien.ac.at

"DYNARDO Austria GmbH
Wagenseilgasse 14, A-1120 Vienna, Austria
e-mail: sebastian.wolff@dynardo.at

(Ricevuto 10 Giugno 2012, Accettato 10 Ottobre 2012)

Key words: computational methods, structural mechanics,hststec analysis, probability
theory, software development.

Abstract. Most engineering problems are so complex that the solution requires the
application of computer-based numerical algorithms. For research purposes (particularly for
algorithmic developments) interpreted scripting languages are chosen as the primary tools.
While this enables rapid prototyping of the algorithms, it typically leads to substantial loss of
computational performance as compared to solutions based on compiled languages. Hence,
the final versions of the algorithms are frequently re-coded in a compilable language. This
process, however, may involve quite substantial re-organization of the flow of execution, and
possible introduces unwanted errors. This paper presents an innovative approach to bringing
interpreted and compiled languages close together. Applications to simple random vibration
analysis demonstrate the applicability and potential of this new approach.

1 INTRODUCTION

In many engineering application there is an indrgademand on the availability of tools to
incorporate unavoidable random variability of loashsl system properties into the workflow
of structural analysis. This requires a close i@abetween the data structures as required for
traditional Finite Element analyses and the stdatgagool required to obtain a suitable
statistical description of the relevant respon$eéss is readily achievable by using established
software development environments such as e.g. ©ue to the required compilation
process and the possibly code optimization assatiatth it, the computational performance
can be quite impressive. On the other hand, thepde#ink-cycles do not allow for quick
checks how minor algorithmic modifications or exdiems affect the quality of the desired
results. This is particularly annoying when deveailgdarger software projects in a distributed

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 10

C. Bucher and S. Wolff

work environment, since each compile-link must &htar potential changes in dependent
modules which may lead to substantial delays.

It turns out that such algorithmic modifications ohnecking steps can be much faster
performed using an interpreted scripting languagieeit at some loss of algorithmic
performance. Typically this is not a real probleetéuse test examples are usually chosen
small enough not run into performance problemsaifyf thorough discussion on the use of
scripting languages in computational science ismi®.g. in (Langtangen 2008).

This paper focuses on the development of a C++ taddhrary for structural, mathematical,
and statistical analysis including graphics namadgd NG which can be driven through a
scripting language as well. For performance regsah® scripting language lua
(lerusalimschy 2006) was chosen. Since the flowtrobof lua is not too far from the flow of
C++, it is fairly straightforward to convert piecetlua-Code to C++-code carrying out the
same task. This is quite useful once the algorithrfixed and computational performance
must be enhanced. The major advantages of luaecanrbmarized as follows:

Very fast scripting language

Popular for scripting of 3D games, recent develapshef TEX and friends
Lightweight basic interpreter code, compiles tewa kB

Easily embeddable into final product, thus provigatand-alone solutions
Flow structure close to C conventions (for, if, l&hi..)

However, there are of course also some things ngssi

— lua contains only simple math functions (sin, @«,...)
— Extensions for stochastic structural analysis neéede

A previous software project in which the authorsrevenvolved (SLang - the Structural
Language) has been presented in (Bucher, Schorang, Wall 1995). For a current
commercial software project (optiSLang 2012), thlebility analysis module was developed
exactly in this way, i.e. by implementing and tegtthe algorithms in slangTNG. During this
test phase, time-consuming compile-link-cycles dobé eliminated thus sppeding up the
development process significantly. After finalizittge algorithms in script form, they were
subsequently transferred into fast-running C++.

2 CONNECTING COMPLIED AND SCRIPTED VERSIONS

Since compiled and scripted versions of an algaritrely on substantially different
realizations in computer code, any scripting lamguaequires some “glue”-code with
connects the data structures of the script intégpr® the data structures of the compiled
object library. Establishing and maintaining thifueg code can be substantial effort,
particularly is parts of the class interfaces dranging during the development process. It is
therefore helpful to utilize an automatic bindinggess. For the software package slangTNG,
this binding of the C++ code to the scripting laagelua is performed automatically using
swig (SWIG Documentation 2012). Several tests showatttite wrapper code generated is
fast and efficient for virtually all practical caseA further advantage afwig is the fact that
bindings to other scripting languages suchpgihon can be generated without additional
effort.

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 11

C. Bucher and S. Wolff

The general procedure can be summarized as follows:

Define class methods in header file “class.hppliissl

Prepare a SWIG input file “class.i” to define theallers to be scanned
(independent of scripting language)

SWIG reads these header file and generates C++cglde “wrap_class.cxx” for
all public methods (for specified scripting langaag

Wrapper code plus C++ implementation of class &lgs” are assembled in
library

Library is loaded by the language interpreter

In lua, classes can be accessed thrdughables

This is shown schematically in in Fig.1.

Define class
"class.hpp"

Generate wrapper
"wrap_class.cxx"

Define wrapper

"class.i"
Object library
Implement class "libclass.a"
"class.cpp"

Figure 1: Generating wrapper code for the lua preter.

In order to access and use the C++ classes codtanthis wrapped module library, the
following steps are required:

From C++ code, allocate ndwa interpreter in “main.cpp”
Make class methods accessibléui@ by calling “lua_openclass()”
Use class in scripts “use_class.tng” passed toeldy createdua interpreter

This procedure is shown schematically in Fig.2.

Interpret

Main program | | Open library
lua script

: Sto
"main.cpp" lua_openclass() P

Define 1lua script
"use_class.tng"

Figure 2: Opening lua module for the interpreter.

In order to demonstrate the close relation betwherC++ implementation and the lua script
version, consider the definition and simulationaoGaussian random variable with a mean
value of 1 and a standard deviation of 0.5. Theecamipped as shown in Fig.3 shows an
implementation of this process in C++. It can bensthat typical C++ features are utilized
such as the use of class constructors and cladsodsetNote that in the background, the
specific classRanvarNormal inherits from a more general claBanvar. The C++ code
needs to be compiled and linked against all reduileraries before it can be tested and

applied.

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 12

C. Bucher and S. Wolff

// Create and simulate random variable
stoch::RanvarNormal rv(); //Constructor of class RanvarNormal
tmath::Matrix s(2); // Constructor of class Matrix
s[0] = 1; s[1] = 0.5; // Accessor of class Matrix
rv.SetStats(s); // Method of class RanvarNormal
tmath::Matrix r = rv.Simulate(100); // Method of class RanvarNormal
// Access values in a loop
for (int i=0; i<100; ++i) { // Loop construct
printf(”i: %d, r %g\n”, i, r[i]);
}

O WOoONOOTUDWNR

[y

Figure 3: C++ code for simulation of a Gaussiardcan variable.

By binding this C++ code to tHea interpreter as outlined above, this process casthpted
and run from théua intepreter. The SWIG input file required for theapping process is

shown in Fig.4.

%module stoch

%{ /* The includes required for the wrapper code: */
#include "stoch/simulate/ranvar.hpp”

%}

/* Our classes and methods to be wrapped: */
%$include "stoch/simulate/ranvar.hpp”

NoOuh WN R

Figure 4: SWIG input file required to bind Ranviass.

Thelua code which is then usable from slangTNG is shawig.5.

1 -- Create and simulate random variables

2 rv = stoch.RanvarNormal() -- Constructor of class RanvarNormal
3 s = tmath.Matrix(2) -- Constructor of class Matrix

4 s[0] = 1 s[1] = 0.5 -- Accessor of class Matrix

5 rv:SetStats(s) -- Method of class RanvarNormal

6 r = rv:Simulate(100) -- Method of class RanvarNormal

7 -- Access values in a loop

8 for i=0,99 do

9 print(”i”, i, "r", r[i]) -- Loop construct

10 end

Figure 5:lua code (slangTNG) for simulation of a Gaussian randariable.

3 SIMULATION OF THE TRANSIENT RESPONSE OF A DUFFING
OSCILLATOR

The equation of motion of a Duffing oscillator is’gn by

mi+ cx+kx +ekx® = (1)

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17

C. Bucher and S. Wolff

Herex is the displacement) denotes the madsthe linear stiffness; is the nonlinearity
parameter anf{t) denotes the excitation process. In the following assumed, that the
excitation is a stationary random process withvamgipower spectral density:

(2)

Spr(@) =
rf l%—gé

The initial conditions for the oscillator are as®hto be quiescent, therefore the response
will exhibit a transient phase while asymptoticallgaching stationarity. The excitation

process is simulated using the classical Rice ftatimn (see e.g. Bucher, 2009), and the
responses are computed using a fourth-order Runigg:Kxplicit integrator.

The slangTNG code carrying out the simulation isvah in Fig.6 and the code for the
reponse analysis is shown in Fig.7.

1{==II

2| SLangTNG

3|Simple test example for simulation of random processes

4 (c) 2009 - 2812 Christian Bucher, CMSD-VUT

5| --11

6

7| -- This function defines the two-sided PSD of the process
8| function PSD (S, a, b)

9| local p = S/(1+(b/a)"4)

10| return p

11| end

12

13| -- This function simulates one sample of the random process

14| function process(S@, om@, om_max, nOmega)
15| dOmega = om_max/nOmega

17|-- Fill an array with PSD values
18| spec = tmath.Matrix(nOmega)

19| wvar =0

20| for i=0,nOmega-1 do

21 spec[i] = PSD(S@, om@, (i+.5)*dOmega)
22 var = var + 2*spec[i]*dOmega

23 end

24

25| -- Generate random Fourier coefficients

26| a = stoch.Simulate(nOmega,1)

27| b = stoch.Simulate(nOmega,1)

28| ¢ = tmath.Pow(spec*2*dOmega, 0.5):CH()*a

29| s = tmath.Pow(spec*2*dOmega, 0.5):CH()*b

30

31| -- Assemble real and imaginary parts, apply inverse Fourier transform

32| help = c:AppendCols(s)*math.sqrt(nOmega/2)
33| f, dt = spectral.IFT(help,dOmega)

34 return f, dt

35| end

Figure 6: Sample code for Monte-Carlo simulatib@a stationary random process with given power spkc
density function.

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 14

C. Bucher and S. Wolff

1) --[[
2| Compute transient statistics of the response of a Duffing oscillator
3/ to a random process with given PSD
4
5/ (c) 2012 Christian Bucher, Vienna University of Technology
6| --11
7
8| -- Load the code for generating the excitation
9| dofile("process.tng”)
10
11| -- define the Duffing systems in terms of derivatives of state variables
12| function duffing(t, y)
13 local m = 1
14 local k =1
15 local c = 0.01
16 local eps = 0.1
17 local index = t/dt
18 force = f[index]
19 local z = tmath.Matrix(2)
20 z[0] = y[1]
21 z[1] = -c/m*y[1] - k/m*(y[@] + eps*y[0]7A3) + force/m
22 return z
23| end
24
25| -- define the excitation
26(S0 = 1
27| om@ = 3

28| om_max = 10
29| nOmega = 501
30(NT = 2*(nOmega-1)

31
32| -- Simulate the excitation and compute the response by Runge-Kutta
33| NSIM = 300

34| disps = tmath.Matrix(NT, NSIM)
35| for i=0, NSIM-1 do

36 f, dt = process(S@, om0, om_max, nOmega)

37 T = NT*dt

38 diff_eq = ode.RK4(2, "duffing”)

39 response = diff_eq:Compute(®, T-dt, NT, 2) -- use 2 substeps
40 disps:SetCols(response:GetRows(0):Transpose(), i)

41 print("i”, i)

42| end

43| mean = stoch.Mean(disps)
44|sigma = stoch.Sigma(disps)
45|/t = tmath.Matrix(NT)

46| t:SetLinearRows (0, T-dt)

48| vis = graph.Graph(”Transient Statistics”, "Bright”)
49| vis:AxislLabels(”"Time [s]”, "Displacements [m]")

50| vis:Plot(t, mean, 1, "Mean”)

51|vis:Plot(t, sigma, 1, ”"Sigma”)

52| vis:PDF(”Stats.pdf")

Figure 7: Sample code for carrying out Monte-Caitoulation of a Duffing oscillator.

The results of the simulation based on 300 sangykeshown in Fig.8. It can be seen that the
standard deviation approaches the stationary soluiell within the time frame as analyzed.

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 15

C. Bucher and S. Wolff

o ilhlil
UO’ I I | WG AL
g il
< W

(o)

x O i

:(‘3

E

i)

o

[T ||

= |

L

ok

e

i
o | ! I
(=] l I | \

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Time [s] (*E1)

Figure 8: Mean value and standard deviation otriduesient stochastic response of a Duffing osaitlat

4 CONCLUDING REMARKS

The software project slangTNG demonstrates thas ifairly easy to establish and
maintain a stable connection between code writtea icompiled language (C++) and an
interpreted language (lua). This enables fast dgveént cycles regarding the implementation
of new or modified algorithms for stochastic sturat analysis using scripting and yet allows
for a smooth transition to compiled versions ofsthalgorithms.

The software is in the public domain (BSD-styleetise) and can be downloaded from
http://tng.tuxfamily.org. Ready-made binaries foadOSX and Windows are available from
the first author's homepage at Vienna University ofTechnology
http://info.tuwien.ac.at/bucher/Private/slangTN@&ht An iOS version is available on the
Apple App Store.

Screenshots of the iOS version are given in Fig.9.

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 16

C. Bucher and S. Wolff

i...Orange A = 13:19

% =}l .. Orange A = 13:19 % =}l .. Orange A = 13:19

More

Transient Statistics

simulate.tng

=L
Compute transient statistics of the
response of a Duffing oscillator
to a random process with given PSD
(c) 2012 Christian Bucher, Vienna
University of Technology A toolkit for numerical analysis in
=1 & - linear algebra
e - probability and statistics
-- Load the code for generating the E - finite elements
excitation Il - spectral analysis
dofile("process.tng") gg - optimization
- : : E - structural dynamics

—— define the Duffing systems in £ - ordinary differential equations
terrfls of derivatives of state 5 _ 2D and 3D visualization
variables =]
function duffing(t, y)

local m = 1

local k = 1 o . <

loeall ¢ = 0,01 = The following third party software

local eps = 0.1 | products were used in the preparation of

local index = t/dt | slangTNG:

200 250 300

force = f[index] 0.0 50 100 15,0
- i Time [s] ("E1)

Select...

Pause

Documentation...

= 19 O O

il PrE—
Scripts nsole Inspect Graphic More S nsole Inspect Graphics

Figure 9: Screen shots of slangTNG on iOS.

5 ACKNOWLEDGMENT

The authors would like acknowledge financial supfieam the Austrian Science Funds

(FWF) as part of the Vienna Doctoral Programme oatal/ Resource Systems (DK-plus
W1219-N22).

REFERENCES

[1]
[2]
[3]

[4]
[5]

[6]

Langtangen, H. P. (2008python Scripting for Computational Science. Springer.

Bucher, C., Y. Schorling, and W. A. Wall (19955Lang—-the Structural Language, a
tool for computational stochastic structural anialysIn: Engineering Mechanics,
Proceedings of the 10th Conference. Ed. By S. Sture. ASCE, pp. 1123-1126.

optiSLtang. URL: http://www.dynardo.de/en/software/optisldrtgnl (visited on
10/10/2012).

lerusalimschy, R. (2006Programming in Lua. 2nd. Rio de Janeiro: lua.org.

SWMG Documentation. URL: http://www.swig.org/Doc2.0/SWIGDocumentation.htrfVisited on
06/21/2012).

Bucher, C. (2009). Computational analysis aidamness in structural mechanics. Ed.
By D. M. Frangopol. Structures and InfrastructuBe®k Series, Vol. 3. London: Taylor
& Francis.

Meccanica dei Materiali e delle Strutture | 3 (2012), 4, PP. 10-17 17

